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Modifying Pivot Elements in Gaussian Elimination* 

By G. W. Stewart 

Abstract. The rounding-error analysis of Gaussian elimination shows that the method is 
stable only when the elements of the matrix do not grow excessively in the course of the 
reduction. Usually such growth is prevented by interchanging rows and columns of the 
matrix so that the pivot element is acceptably large. In this paper the alternative of simply 
altering the pivot element is examined. The alteration, which amounts to a rank one modifi- 
cation of the matrix, is undone at a later stage by means of the well-known formula for the 
inverse of a modified matrix. The technique should prove useful in applications in which the 
pivoting strategy has been fixed, say to preserve sparseness in the reduction. 

1. Introduction. Let A be a real matrix of order n. The method of Gaussian 
elimination may be regarded as a technique for computing the LU decomposition 
of A into the product of a unit lower triangular matrix L and an upper triangular 
matrix U. Specifically, at the kth step of the reduction, we have 

[L1k) ( 1 
k)Uk) 

A = L11 01 U11 U12 

L21 AIJ22 

where L1ik) and U, (k) are of order k. The (k + 1)th row of U is then given by 

uk + li = a k+ (i - k + 1, k + 2, *. , n), 

the (k + 1)th column of L by 

41?,k+ = a + l/ak 
( 

+ (i = k + 1, k + 2,** ,n), 

and the matrix A22 (k+1) by 

aii = a, - lik+lUk+(,i = k + 2, . n). 

The element ak+lsk+l 
W is called a pivot element for the algorithm. If it is zero, 

the algorithm fails, and if it is too small, the algorithm becomes unstable in the 
presence of rounding errors. Usually, this problem is avoided by interchanging two 
rows and perhaps two columns of A22 (k to bring an acceptably large element into 
the pivot position. However, in applications involving large sparse matrices, an 
unhappy pivot selection may destroy the sparsity of the subsequent matrices. Indeed 
in some applications the choice of pivots is determined entirely from the sparsity 
structure of A, leaving no freedom to pivot for stability (e.g. see [1]). 

In this paper we shall examine the technique of modifying the pivot element 
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so that it is acceptably large and then undoing the modification later after the LU 
decomposition of the modified matrix has been computed. Since the emergence of 
a small pivot element in Gaussian elimination betokens a numerical ill-determination 
of the LU decomposition, we shall not try to obtain the LU decomposition of A 
itself; rather, we shall show how the LU decomposition of the modified matrix may 
be used to solve linear systems involving A. 

The next section will be devoted to describing the mechanics of the technique. 
The effects of rounding error will be discussed in Section 3. 

2. Modifying Pivot Elements in the Solution of Linear Equations. In this 
section we shall show how the solution of the equation 

(2.1) Ax = b 

can be obtained from the solution of 

(2.2) By= b, 

where A and B differ only in their (1, 1)-elements. We shall then indicate the ap- 
plications of this technique in Gaussian elimination. 

Since A and B differ only in their (1, 1)-elements, B can be written in the form 

B = A + oele1T, 
where el is the first column of the identity matrix. Then it follows from the well- 
known modification formula (see [2, p. 123]) that 

(2.3) A-' B1 - rB-1e TB-, 

where 

T = 1/(elTB-le, - r-l). 

Since x = A-'b we have from (2.2) and (2.3), 

x = y - rBlelel y = y - ry1cl, 

where y' is the first component of y and cl is the first column of B- 1. Thus, the solution 
of (2.1) can be obtained from the solution of (2.2) by subtracting a suitable correction 
vector. 

The economics of this technique are favorable. The system (2.2) costs no more 
to solve than (2.1). The vector cl can be obtained at the same time and at very little 
additional cost by solving the system Bc, = el. The computation of r (n.b., elTB 'e1 

is the first component of cl) and x entails a negligible amount of additional calcula- 
tion. Note that once cl has been calculated, it can be saved and used to solve other 
systems of the form (2.1) with differing right-hand sides. 

Concerning Gaussian elimination, suppose that at the kth step an unacceptably 
small pivot element emerges. Then a solution of (2.1) may be obtained in the form 
xT = (x1 , x2 (k)T) as follows. 

(1) Solve the system 

{LVM) o fbk] fbj 

L2 Lbk 1 b2Jb 
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(2) Set B22(k) = A22(k) + okelelT, where 0k is chosen to make the pivot element 
acceptably large. 

(3) Solve the systems 

B22y~k) = b2k) B22 cl = el . 

(4) Correct Y2 (k) to yield a solution of the system 

(k) (k) _ b(k) 
A22 X2 b 

(5) Solve the system 
) 

X1k) b(k) - k) (k) 

This process can be repeated should an unacceptably small pivot be encountered 
in step 3 of the above algorithm; however, here the economics are not as favorable. 
The time considerations are roughly the same; each application of the technique 
requires the solution of an additional set of equations involving the matrix B22 (k), 

a negligible increase over the Gaussian reduction of B22 (k) itself. However, each 
Cl (k) must be stored, and, since they are columns of inverse matrices, they need not 
be sparse, even when the original matrices are. Thus in applications involving large 
sparse matrices, the technique cannot be used too many times. 

There remains the problem of choosing 0k. It is clear that ok must not be too large; 
for as 0k increases, A22 (k) + okelelT becomes a slight perturbation of the singular 
matrix o-kelel'. A natural choice is to take 0k to be just large enough to dominate 
the elements in the first column of A22 (k), which corresponds to partial pivoting 
in the elimination process. Since the value of the next pivot element can easily be 
computed, it may be desirable to alter 0k slightly, say multiply it by a factor of two, 
whenever cancellation would occur in the calculation of the next pivot element. 

It is hardly necessary to add that our results hold also for the Crout and Doolittle 
variants of Gaussian elimination, for which the discussion above remains valid with 
some slight and obvious modifications.** 

3. Error Analysis. The algorithm described in the last section must be im- 
plemented in finite precision arithmetic, and it is important to assess the effects of 
the resulting rounding errors on the solution. For simplicity, we shall first assume 
that a modification is made at the first stage of the elimination and drop the super- 
scripts (k). We shall determine conditions under which the computed solution x 
has a residual r = b - Ax that is small. Note that, whatever the value of r, x is the 
solution of the system 

(A + E)x= b, 

where E = rxT/'1x112 satisfies IIEII/IIAII = llrl/llxil hJAil in the Frobenius norm, 
defined by I IA I12 = trace ATA. Thus a small residual implies that x, however in- 
accurate, is the solution of a slightly perturbed problem. 

The following notation will be used in the error analysis. The symbol (k), called 
a relative counter, will stand generically for a quotient of the form 

* * This baroque variation on the famous theme of Laplace (il est aise d voir) is due to Ostrowski 
[Arch. Rational Mech. Anal., v. 1, 1958, p. 241]. 
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(3.1) (k) = (1 + pi)(i + P2) ... (1 + p0)/(1 + Pz+i)(i + P1+2) ... (1 + Pk), 

where the numbers Ipil are uniformly bounded by some small quantity. We shall 
also use the notation #k# for the deviation of (k) from unity: 

#k# = 1 - (k). 

The symbol #k# will be called an absolute counter. We shall assume that the bounds 
on the pi in (3.1) and on the integer k are so restricted that 

(3.2) /#k#/I _< k.e < .1 

for some number e of approximately the same size as the bound on the Ipj. If x is 
a vector, then x(k) will denote the vector (xl (k), x2(k), X.. , x.(k))', where each 
appearance of the counter k may stand for a different value. 

The relative and absolute counters have the following easily verified properties: 

(k)(l) = (k + 1), I/(k) = (k) 

and 

(3.3) (k) - (1) = #k + 1#. 

The usual backward error bounds for t-digit, base 3, floating-point arithmetic 
(see, e.g., [3]) can be expressed in the form 

fl(a o b) = (a o b)(1) (o = X,*) 

and 

fl(a ? b) = a(1) i b(l), 

where e in (3.2) is of the order d'. 
We turn now to the analysis of the effect of modifying the 1-1 element of A. 

All quantities will denote the computed values, with the exception of B = A + oeieiT. 
The first step is to solve the systems By = b and Bc = el. We assume this is done 
stably so that the computed solutions satisfy 

By (B + E,)y = b and B2cI (B + E2)cl = el, 

where IIEill _ e IIBII (i = 1, 2) for some small ei. Note that the single rounding 
error made in forming B from A may be absorbed in the error matrices Ei. 

The next step is to compute r. There is no rounding error in the computation of 
cil = elTB2-jle. Hence 

T = fl[(cII - I (1) 

or 

(3.4) r + a(3) - racl1(3) = 0. 

Finally one computes 

x = fl(y - ry~cl) = y(l)- rylc(3). 

From this it follows that 
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ry1Cl = y(4) - x(3), 

whence from (3.2) 

(3.5) IT| Iy| IC1i | |? 1.1(|IX| + |IIY|). 
Now 

r = b - Ax = b - (B - aele)x = b -(B2 - oeleT)x - E2x 

(3.6) = b - (B2 -oelel)(y(l) - Ty1Cl(3)) E2x 

= b - B2y(1) - E2x + yl(r + (1)- To-cjl(3))el + ylTB2Cl#3# 

the last equality following from the fact that 

B2C1(3) = B2c1 + B2cI#3# = el + B2c1#3#. 

On subtracting zero in the guise of (3.4) from the term in parentheses in the last 
member of (3.6), we obtain from (3.3) 

r = b - B2y(1) - E2x + Yi(0#4# - rocll#6#)el + ylTB2c/#3#. 

Hence 

r = b - B y + (E1 - E2)y + B2y#1# - E2x 

+ Yi(0#4# - TrCll#6#)el + ylTB2ci#3#. 

Since b - Bly = 0, if we let 

j = max{] 
[AjI I'1I-} and X -- H, 

then from (3.2) 

I[rill - (< + E2)X + epA + e2 + 4eX/. + 6.6elu(l + X) + 3.3qe,(l + X) 

< 62 + IO061 + (61 + 62 + 15e/.). 

This result is quite satisfactory. For reasonable modifications of the pivot element, 
the number ,u will be of order unity. Thus X, the ratio of the sizes of the computed 
solutions of the equations Ax = b and By = b, is the controlling factor. If X is large, 
that is if severe numerical cancellation occurs in the passage from y to x, the result 
cannot be guaranteed to have a small residual. Note that this cannot happen if B is 
well conditioned, whatever the condition of A. In any event, the condition is one that 
can be easily checked. 

There remains one point to clear up. The modification step is only one part of 
the algorithm described in the last section, and we must show that this algorithm 
as a whole is stable. The usual rounding error analysis for triangular systems shows 
that the computed vectors b, (k) and b2 (k) satisfy 

L (k) 
+ F 1 1b bl' 

if.JJ 
e+F21 I, bk) a 2 

where F11 and F21 are small compared to L1l M and L21 (k. The results of this section 
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imply that, if all has gone well, the computed vector x2 ' will satisfy 

(A22 + G22)Xk) = W 

where G22 is small compared with A22 (k). Since the solution for x1 k) amounts to no 
more than the completion of the solution of a triangular system, the computed vector 
x satisfies 

(3.8) [Un) + G,, Ul) + G12] [xl] fb=kl 
2 + G22j 22 J b(k)J 

where G,, and G22 are small compared with U11 M and U12(k. Equations (3.7) and 
(3.8) can be combined in the usual way to show that the computed solution satisfies 
(A + H)x = b where H is small compared with A (see for example [3, p. 108], in 
which the final bound must be supplemented by a factor of I LI I since no assumptions 
about pivoting strategy have been made). 
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